skip to main content


Search for: All records

Creators/Authors contains: "Cooke, John P."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Endothelial mechanobiology is a key consideration in the progression of vascular dysfunction, including atherosclerosis. However mechanistic connections between the clinically associated physical stimuli, vessel stiffness and shear stress, and how they interact to modulate plaque progression remain incompletely characterized. Vessel-chip systems are excellent candidates for modeling vascular mechanobiology as they may be engineered from the ground up, guided by the mechanical parameters present in human arteries and veins, to recapitulate key features of the vasculature. Here, we report extensive validation of a vessel-chip model of endothelial yes-associated protein (YAP) mechanobiology, a protein sensitive to both matrix stiffness and shearing forces and, importantly, implicated in atherosclerotic progression. Our model captures the established endothelial mechanoresponse, with endothelial alignment, elongation, reduction of adhesion molecules, and YAP cytoplasmic retention under high laminar shear. Conversely, we observed disturbed morphology, inflammation, and nuclear partitioning under low, high, and high oscillatory shear. Examining targets of YAP transcriptional co-activation, connective tissue growth factor (CTGF) is strongly downregulated by high laminar shear, whereas it is strongly upregulated by low shear or oscillatory flow. Ankyrin repeat domain 1 (ANKRD1) is only upregulated by high oscillatory shear. Verteporfin inhibition of YAP reduced the expression of CTGF but did not affect ANKRD1. Lastly, substrate stiffness modulated the endothelial shear mechanoresponse. Under high shear, softer substrates showed the lowest nuclear localization of YAP whereas stiffer substrates increased nuclear localization. Low shear strongly increased nuclear localization of YAP across stiffnesses. Together, we have validated a model of endothelial mechanobiology and describe a clinically relevant biological connection between matrix stiffness, shear stress, and endothelial activation via YAP mechanobiology. 
    more » « less
  2. Abstract

    Deep vein thrombosis (DVT) and its consequences are lethal, but current models cannot completely dissect its determinants—endothelium, flow, and blood constituents—together called Virchow's triad. Most models for studying DVT forego assessment of venous valves that serve as the primary sites of DVT formation. Therefore, the knowledge of DVT formed at the venous cusps has remained obscure due to lack of experimental models. Here, organ‐on‐chip methodology is leveraged to create a Vein‐Chip platform integrating fully vascularized venous valves and its hemodynamic, as seen in vivo. These Vein‐Chips reveal that vascular endothelium of valve cusps adapts to the locally disturbed microenvironment by expressing a different phenotype from the regions of uniform flow. This spatial adaptation of endothelial function recreated on the in vitro Vein‐Chip platform is shown to protect the vein from thrombosis from disturbed flow in valves, but interestingly, cytokine stimulation reverses the effect and switches the valve endothelium to becoming prothrombotic. The platform eventually modulates the three factors of Virchow's triad and provides a systematic approach to investigate the determinants of fibrin and platelet dynamics of DVT. Therefore, this Vein‐Chip offers a new preclinical approach to study venous pathophysiology and show effects of antithrombotic drug treatment.

     
    more » « less
  3. Abstract

    3D bioprinting is an emerging additive manufacturing technique to fabricate constructs for human disease modeling. However, current cell‐laden bioinks lack sufficient biocompatibility, printability, and structural stability needed to translate this technology to preclinical and clinical trials. Here, a new class of nanoengineered hydrogel‐based cell‐laden bioinks is introduced, that can be printed into 3D, anatomically accurate, multicellular blood vessels to recapitulate both the physical and chemical microenvironments of native human vasculature. A remarkably unique characteristic of this bioink is that regardless of cell density, it demonstrates a high printability and ability to protect encapsulated cells against high shear forces in the bioprinting process. 3D bioprinted cells maintain a healthy phenotype and remain viable for nearly one‐month post‐fabrication. Leveraging these properties, the nanoengineered bioink is printed into 3D cylindrical blood vessels, consisting of living co‐culture of endothelial cells and vascular smooth muscle cells, providing the opportunity to model vascular function and pathophysiology. Upon cytokine stimulation and blood perfusion, this 3D bioprinted vessel is able to recapitulate thromboinflammatory responses observed only in advanced in vitro preclinical models or in vivo. Therefore, this 3D bioprinted vessel provides a potential tool to understand vascular disease pathophysiology and assess therapeutics, toxins, or other chemicals.

     
    more » « less